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On the time-dependent radiative transfer in photospheric 
plasmas: 11. The analytical theory versus Monte Carlo 
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Department of Physics, 201 North Physics Building, University of Utah, Salt Lake City, 
UT 84112. USA 

Received 24 September 1986, in final form 26 February 1987 

Abstract. This paper is the second of a series investigating time-dependent radiative transfer 
processes of x-rays in photospheric plasmas. We present a quantitative discussion of 
analytical results derived earlier and a comparison with Monte Carlo simulations. The 
geometry considered here is a homogeneous plasma ball with radius R. The source is 
concentrated on a concentric shell with radius r, < R. Point sources at the centre of the 
ball or semi-infinite geometries are discussed as limiting cases. The time profile for the 
source can be arbitrary. Diffusion profiles are given for every scattering order and the total 
profile appears as the sum over these individual profiles. The comparison with Monte 
Carlo results is used to test the accuracy of the analytical approach and to adjust the time 
profiles of the first few scattering orders. The analytical theory yields good results over a 
wide range of situations with remarkable numerical efficiency. All results can be calculated 
on a microcomputer. 

1. Introduction 

This paper is the second in a series investigating time-dependent radiative transfer 
processes of x-rays in photospheric plasmas. By photospheric we mean that the photon 
lifetimes with respect to absorption are larger than the typical escape times; see the 
introduction to Schweizer (1987, hereafter referred to as I). The purpose of this second 
paper is to discuss the analytical results derived in I and to compare them with numerical 
simulations. 

The work presented here marks progress in several ways. The analytical results 
are given as explicit solutions of a random walk process in (1 + 3) dimensions and the 
numerical part is reduced to the straightforward task of performing one-dimensional 
convolution integrals of polynomial Green functions with an  arbitrarily chosen time 
profile b ( t )  for the source. The numerical efficiency is remarkable; all results can be 
calculated on a microcomputer. 

Most of the earlier analytical treatments are based on the so-called two-stream 
approximation and provide models for one-dimensional media only, see, e.g., Code 
(1964) or  Nagel and MCszaros (1985). 

The general geometry considered here is a homogeneous plasma ball with radius 
R. The source is concentrated on a concentric shell with radius ro < R. For ro/ R << 1, 
we obtain the case of a point-like source at  the centre of the ball. The opposite limit 
is reached if ( R  - ro)/  R << 1. This corresponds to a semi-infinite geometry with source 
at optical depth T~ = R - ro below the boundary. 

t Supported by NSF grant PHY-8503653 
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Although our analytical results are based on symmetry assumptions they account 
for the three dimensionality of the transfer problem. The photons in our model always 
move on a thermal cone in spacetime. The thermal cone for unscattered photons 
coincides with the future light cone in Minkowski space. This corresponds to a 
characteristic velocity U, = c = 3 x 10” cm s-I. The three-dimensionality becomes 
apparent for many-times scattered photons; the thermal cone narrows down to an 
opening corresponding to U, = (1/J3)c. Section 4 is devoted to the question of how 
the thermal cone must be chosen for every scattering order. 

The applicability of transport equations to rapidly varying sources or to geometries 
of modest optical depth is not necessarily obvious. For this reason we did not feel 
compelled to compare our findings with alternative analytical methods or results 
obtained from numerical integration of the Boltzmann equation; see Guilbert (1981) 
or Kunasz (1983). We decided, instead, to use the most fundamental test available 
and simulate every step numerically. 

The comparison with Monte Carlo simulations serves two functions. First it 
provides a means to test the accuracy of the analytical results and second it allows us 
to adjust the thermal cone in each scattering order; see 0 4 below. The total diffusion 
time profile P ( t )  for a given situation is the sum over all scattering orders, i.e. 

P ( t ) =  2 P N ( t )  
N =O 

where P N (  t )  is the profile of the N-times scattered photons. It is shown in 0 4 how 
information inferred from the Monte Carlo results can be used to adjust the first few 
P N  . 

The Monte Carlo simulations, which include all geometrical details of Thomson 
scattering in three dimensions, produce the same results if Thomson scattering is 
replaced by perfectly isotropic scattering. This partially explains why the analytical 
theory, which treats all scatterings as isotropic, produces good results over a wide 
range of situations. 

This paper is organised as follows. In § 2 ,  the main analytical result describing an 
extended shell source inside a plasma ball is introduced. Section 3 gives a description 
of the Monte Carlo methods applied in this work. Section 4 deals with the adjustment 
of the thermal cone for the first few P N .  In 00 5 and 6 ,  we study semi-infinite geometry 
and point sources, respectively. Section 7 details the modifications in the Monte Carlo 
algorithm required for the simple case of a constant absorption coefficient. 

The format and timescale of related figures compared in the text are always the 
same. The interested reader may conveniently examine the details by copying corre- 
sponding graphs onto a transparency. 

2. The scattering orders for a source with finite radius 

The geometries discussed in this paper are homogeneous plasma balls with radius R. 
By homogeneous we mean that the matter density, the chemical composition, and in 
particular the electron number density n, are the same everywhere. The mean free 
path A T  = K;’ = ( n p T ) - ’  of a photon with respect to Thomson scattering is therefore 
a constant in space and time. We set the speed of light equal to unity and introduce 
the following dimensionless time and space variables: 

t’ KTt  X KTX. 
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In the general case a source 

concentrated on a shell with radius roG R, releases photons isotropically. The shape 
of the time profile o(t)  of the source can, in principle, be arbitrary. The discussion 
below will show, however, that the analytical approach is not valid for very rapidly 
varying sources. 

I t  was pointed out in the introduction of I that we are primarily interested in 
so-called photospheric plasma geometries, i.e. those in which Thomson scattering 
dominates the radiative transfer and absorption plays a secondary role. Absorption 
effects are nevertheless included in our approach and some aspects are discussed in 
0 7.  For any radiative absorption coefficient K, we define a dimensionless version 
a =  K , K T  characterising the inverse of the absorption time in units of the Thomson 
mean collision time t T =  KT’. 

Let us assume that a source of the type defined in (2) releases a flash of photons 
according to an unspecified time profile CY( t ) .  An observer positioned at radius r s R 
will notice this flash as a signal profile P (  t) such as indicated in ( l ) ,  where PN( t )  is 
the time profile of the N-times scattered photons arriving at r. Most important is the 
case r = R characterising the escape of photons from the plasma ball. Since all 
scatterings of photons with electrons are treated as isotropic, the emission from the 
surface is also isotropic and, modulo a geometric factor, given by PN( t). 

It is easy to see from equations (44), (45), (48) and appendix 1 in I that the 
individual scattering orders are given by 

-1  

P N - l ( f ,  R, r, ro; x; a )  

EV(V-1) N 

N s 2  U - l  EV(  v - n - 1) N 

v = 2  n = 1  [ ( v - n - 1 ) / 2 ] ! [ ( v + n - l ) / 2 ] !  

( t  - t‘-2nxR + x l r  - rfl/ 
2 ) ”  exp[(l+a)t’lo(t’)  

( f  - t’)2 - (2nxR + x l r  - rfll)’ 
d t ’ -- 

( N - U ) !  4 

+ { ; i 2 n x R - x ’ r - r r , l  

( t - t‘ - 2nxR - X I  r - rol 
2 -)” exp[(l +a)t’]d(t‘)  

( t  - t’)2 - [2n,yR - , y ( r +  ro)]’  
4 

r - 2 n x R  +x(  r + r o )  

dt’  
( N - U ) !  
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(3) 1 ( t  - t’-2nxR - , y ( r + r o )  
2 

) exp[(l+a)t’la(r’)  

where 

n = 0 ,2 ,4 ,6 ,  . 
otherwise. 

EV(n) = 

For all but the lowest scattering orders, the so-called characteristic parameter x, which 
is basically the inverse of the characteristic velocity U,, must be set equal to J3 .  A 
detailed discussion of this is presented in 0 4. 

We have, so far, studied Gaussian-type source profiles a (  t )  = exp( -at2). The scale 
of the time variation of such a source is of order 

The case of rapidly varying sources, the so-called Knudsen regime, is particularly 
delicate. We shall see below that the low scattering orders, predicted by the analytical 
theory, are inaccurate if a >> 1. This is especially true for small-sized sources ro S 1. 

Figures 1 , 2  and 3 illustrate the example of a shell source ro = 5 inside a ball R = 10. 
Absorption is neglected, i.e. a = 0. The choice of a = 0.05 for the Gaussian parameter 
corresponds to a scale of 4.5 tT for the time variation of the source. This is an extremely 
short time in most astrophysical situations. The intensity profiles shown in this example 
are for an observer at r = R. 

Figure l ( c )  shows the first dozen scattering orders contributing to the diffusion 
front. These profiles have been adjusted according to the rules to be introduced in § 4. 

Figure 2( a )  illustrates the development of the higher scattering orders; P5, P,o-P60 
are given. Starting at about N = 20, the position of max Pry is roughly at t = N. The 
precision of this correlation improves with increasing N.  This general effect can be 
explained by the large optical thickness of the ball which causes the many-times 
scattered photons to mimic a Poissonian time distribution such as is known in the 
infinite medium case; see 0 2 in I. 

Figure 3(a)  shows the sum (1) for this example. All orders Po-?‘,,, are included. 
Higher scattering orders are numerically insignificant and do not contribute to P( t )  
for t S 130. The optical depth of the source below the boundary is 5 units. This implies 
an average escape time t ,  < 25 t , ,  roughly explaining the position of the peak and the 
decay of the profile. 

Expression (3) includes a double sum over the two indices v and n. The index n 
essentially counts the number of times a photon could possibly have crossed through 
the plasma ball before escaping at time t ;  see the original results in terms of Heaviside 
functions given in I. In the case of the example discussed above it is, for instance, 
possible to restrict the summation over the index n to n s nmax as follows: nmax = 1 for 
t s 30, nmax = 2 for f s 60, nmax = 3 for t 6 100 and nmax = 4 for t s 130. 
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Figure 1. The profiles Po-P,, as functions of t = t r;' for the case of a shell source ro = 5 
inside a ball R = 10. The magnitudes have been normalised to a scale running from zero 
to unity. There is no absorption and a = 0.05. The peaks grow with increasing N and the 
individual P, can easily be identified. The observer is at the boundary, i.e. at r = R. In 
( a ) ,  we show the case x=J3 for all orders. The profiles in ( b )  are from our numerical 
simulation for the same case. The analytical profiles in ( c )  have been adjusted according 
to the two rules given in 8 4. 
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Figure 2. The profiles Pr, P,,-P60. for the same geometry as in figure 1, are shown in ( a )  
from the analytical theory and in ( 6 )  from our Monte Carlo simulation. The peaks are 
progressively delayed with N increasing and the individual P, can easily be identified. 

3. Numerical simulations of time-dependent photodiffusion processes 

The Monte Carlo method simulates the random walk of a photon inside a plasma 
geometry. In a general situation, this includes keeping track of a photon's energy, 
path length and location, and the number of scatterings it has suffered. A photon 
absorbed by the plasma after N scatterings is discounted and does not contribute to 
the ( N  + 1)th scattering order. The random walk of a photon is basically a repeating 
sequence of two processes: propagation along a trajectory and subsequent scattering 
by an electron encountered on that trajectory, i.e. Compton scattering. 

The photon trajectories considered in this paper are null geodesics in a flat space- 
time, i.e. we do not allow for gravitational light deflection or gravitational redshift. 
When projected down to 3-space, a photon trajectory extends as a straight line along 
an arbitrary axis in 3-space. Let us label the positions along such an axis with x. 
Furthermore, let us assume that the starting point of such a trajectory is at x = 0, that 
it terminates at some position x > 0, and that there are no boundaries. Boundaries are 
included later in this section. The terminal position x is generated numerically from 
a probability density function T( x) describing the relative number of trajectory 
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Figure 3. The sum over Po-P2, , ,  for the same geometry as in figure I ,  is shown in ( a )  for 
the analytical theory. The diffusion profile predicted by our Monte Carlo method is shown 
in ( b ) .  

endpoints per unit length on the positive x axis; notice that T(x)  = 0 for x < 0. The 
probability p ( x )  that a photon reaches some value x > 0 is given by the cumulative 
probability that its trajectory terminates at a position y > x, i.e. 

Suppose a photon trajectory terminates at x > 0; there are two possibilities. 
(i)  the photon is absorbed by the plasma at x and discounted in the further evolution 

of the diffusion process. 
(ii) The photon is scattered into a new direction with new energy. For electrons 

at relativistic temperatures, kT - mec2,  interacting with high-energy photons, hv - mec2, 
the scattering cross section is energy depecdent and the energy shift on scattering can 
be significant. However, since we are interested in clearly non-relativistic electron 
temperatures and photon energies, we take the electrons to be fixed and generate the 
scattering direction from the probability density function defined by the Thomson 
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cross section, i.e. from 
- 1 s p < 1  

otherwise 
Tff(,J = 

where p = cos 8, and 8 denotes the angle between incident and scattered direction of 
the photon. The energetic effects of Compton scattering will be included in the next 
paper of this series. 

This clarifies the simulation of the scattering process and we now turn to the 
question of the explicit form of T (x ) .  The geometries considered in this paper are 
homogeneous, thus defining a constant mean free path i. Invoking arguments from 
kinetic theory, one arrives at the conclusion that { i-' exp( -x / i )  x > o  

T ( x )  = 
otherwise? 

(see, e.g., § 59 in Kennard (1938)). 
Let us give an  alternative argument leading to the form (6). We assume that No 

photons move from x = 0 in the positive x direction. We choose two points A > x > 0. 
The number of trajectories terminating in the interval [0, x ]  is given by 

No l(; dy T(y ) .  ( 7 )  

Thus, the number of trajectories which extend beyond x is given by 

These surviving photons give rise to N ( x )  trajectories starting at x. The translational 
invariance of the infinite medium implies that the probability density function associ- 
ated with trajectories starting at x is given by T ( y  - x) .  We conclude from this that 

(8) 

is the number of trajectories terminating in the interval [x, A]. The total number of 
trajectories terminating in the interval [0, A] is the sum of ( 7 )  and (8). Since this total 
number can be given directly as 

N ( x )  jxA dy  T(y  - X I  

No i,: dy T ( y )  

we arrive at  the following equation: 

Some straightforward manipulations lead us to 

T(A) d T(x) T(A - X )  + - T(A-x)=O.  
T(A-x)  dA 

For x = 0, equation (10) reduces to 

t The mean free path ,i is. in general, determined by both absorption and scattering. For this reason, all 
lengths and times in 5 5  3 and 7 are given in dimensional units with c = 1. 



Radiative transfer in photospheric plasmas: I1 4861 

which has the general solution 

T(A) = 1/1 exp(-All) A?O.  (11) 
Our argument does, of course, not fix the integration constant 1 = T(O1-l which is now 
identified with i. 

Finally, let us sketch the algorithm for the case of a point source placed at the 
centre of a ball with radius R. Absorption is neglected at this point; see, however, 5 7 .  
The observer is positioned at the boundary of the ball. 

The algorithm applied here is an adapted version of the modern Monte Carlo 
method introduced by Pozdnyakov et a1 (1977, 1979) in the context of Comptonisation 
of photons in optically thin but relativistically hot plasmas. This method is equivalent 
to the conventional treatment but numerically more efficient when rare events are 
responsible for the formation of the Comptonised spectra. This method has also been 
applied by Schultz and Price (1985) in their analysis of pair production in spherical 
accretion onto 'black holes'. Instead of following an individual photon until it reaches 
the boundary, the new method starts with a statistical weight No which may be 
interpreted as a number of identical photons released from the source, say, at time t = 0. 

The presence of a spherical boundary at r = R divides the photon trajectories, 
originating inside the sphere, into two classes. Trajectories terminating in the interior 
of the ball describe photons which scatter. Trajectories terminating outside describe 
photons which escape. The endpoints of trajectories terminating inside are generated 
numerically from the probability density function (6) truncated at the boundary. The 
following steps are illustrated in figure 4. 

( a )  Determine the distance to the boundary: R. 
( b )  No exp(-RIA,) photons reach the boundary at t = R (see the derivation of 

(4)) and contribute to Po(?) .  

" \  r. 

Figure 4. Illustration of the Monte Carlo algorithm discussed in § 3. 

(c )  NI = No[l -exp(-R/A,)] photons scatter at some point r. The position r is 
generated numerically from the probability density function 

A ;'[l- exp(-R/A,)]-' exp( -r/AT) 0 s  r 6  R. 

( d )  The new direction of the scattered photons is obtained by generating p from 

( a ' )  Determine the distance to the boundary along the new direction: R,  . 
( b ' )  NI exp(-R,/AT) photons reach the boundary at t = r + R,  and contribute to 

(5) and the azimuthal angle from the uniform distribution. 

PI(?). 
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(c’) N z  = N , [  1 - exp( - R l / A T ) ]  photons scatter at position r ,  generated from 

A;’[ 1 - exp( - Rl/AT)]-I exp( - -r /AT)  O s r c  R I .  

(d’) Determine new direction of scattered photons. 
This sequence is continued until either the number N ,  of photons remaining in the 

sphere is reduced below some predetermined value, or the scattering order i becomes 
equal to a predetermined maximum order, or the total path length, t =It-, ,  equals a 
predetermined maximum. This algorithm includes all geometrical details of Thomson 
scattering in three dimensions. However, if we replace ( 5 )  by the uniform distribution 
in p, thus simulating perfectly isotropic photon scatterings, we obtain virtually identical 
results. The uniform distribution in F is given by 

-1=sps1 
otherwise. U ( F )  = 1; 

The intersection of the two areas defined by T H ( p )  and U ( + )  is equal to 0.903 7 7 5 .  
The agreement between the two cases is therefore not surprising. 

4. Treatment of the diffusion front 

The scattering orders (3) have been obtained as a byproduct of solving the telegraphy 
equation 

a a’ 
a t  a t  
-P++P-xx2AP=S.  

The solution P is the sum over all scattering orders as indicated in (1). We may 
consider (12) as a hyperbolic diffusion equation, allowing for finite signal propagation 
only. The characteristic velocity associated with (12) is U, = x-l. It was pointed out 
in I that U, = 1/J3 is reasonable for the description of many-times scattered photons. 
The photon momenta are randomly distributed in this case and there are no privileged 
spatial directions. The characteristic velocity in a given direction is then the root mean 
square of the photon velocity in that direction, i.e. 1 / J 3  . c 5 1/43. This picture does 
not apply to photons having suffered few collisions only. The characteristic velocity 
associated with unscattered photons is equal to c, i.e. U, = x-’ = 1. For the first few 
scattering orders, the so-called characteristic parameter x varies between unity and 
d3. Figure 5 ( a )  shows Plo,  Pzo, P,,, P40, P5,, and P60 for two fixed choices of x. The 
geometry is semi-infinite with the source at optical depth T~ = 10 below the boundary. 
The Gaussian parameter is a = 0.05. The broken curves represent the profiles for ,y = 1, 
and the full curves are the profiles for x = J 3 .  In the J 3  case, the orders Plo, Pzo, P,, 
and P40 are visibly delayed compared to their ( x  = 1) counterparts. For ,y = 1, the 
peaks are maximal around Pzo and decay rapidly thereafter. This contrasts with the 
J3 case where the peaks become maximal between P4,, and P 5 0 .  There is also a visible 
discrepancy in the absolute magnitudes: max PI,( x = 1) is about twice the value of 
max P4o(x=J3) .  

Figure 5 ( b )  shows the same scattering orders produced from our numerical simula- 
tion. A comparison with figure 5 ( a )  leaves no doubt that ,y = J 3  is the proper choice. 
This is, in fact, generally true as far as high scattering orders are concerned. 

The treatment of the low scattering orders, on the other hand, is more delicate. As 
pointed out above, the case Po calls for ,yo = 1. For the subsequent orders we expect 
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Figure 5. These figures show, from left to right, P , , ,  Pz0,  P3, ,  P40, and P6, for a source 
at optical depth T ~ =  10 below the boundary in a semi-infinite geometry. There is no 
absorption, CI = 0.05 and the observer is at the boundary, i.e. T = 0. The broken curves in 
( a )  are analytical profiles for x = 1. The full curves show the same case for x =J3. The 
profiles in ( b )  are from our numerical simulation. 

the xN to grow with increasing N and this sequence should eventually converge to 
43. After studying many examples we found that the sequence xo = 1 ,  x, = 1.05, xz = 1 . 1 ,  
,y3 = 1.15, x4 = 1.2, x5 = 1.3, x6 = 1.4, x7 = 1.5 ,  xS = 1.6 and xN = J3 for N 2 9 guarantees 
reasonably good agreement with the Monte Carlo results and does so independently 
of the particulars of the geometry under consideration. Figure 5 (  a )  shows that a shift 
in ,y not only changes the timing of a profile but also its magnitude. A5 a second rule 
we have, therefore, decided to rescale the magnitudes of the PN back to the values 
obtained for xN = J3. 

We do not intend to justify these rules on theoretical grounds. The difficulties 
encountered in connection with the diffusion front are of a fundamental nature, since 
our analytical results are solutions of a diffusion equation. A generic property of the 
diffusion regime is the ( l / r )  decay behaviour of the perturbations. In fact, even the 
random distribution W,( t ,  x), upon which our analytical results are based, shows this 
behaviour; see ( 1  1 )  in I. Since W, is used to describe unscattered photons one would 
definitely wish it to decay like ( l /r2) .  The diffusion equation (12), however, determines 
W, uniquely (see I )  and it is an unfortunate fact that W, decays like ( l /r ) .  This 
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compounds the complications with the low scattering orders. Applying our analytical 
results to the first few PN amounts, in fact, to pushing the diffusion approximation 
beyond its range of validity. The two rules given above should be seen as a practical 
compromise which is not yet optimal. A more sophisticated procedure would make 
the adjustments consistently dependent on the type of geometry, optical depth and 
scattering order. However, the results obtained in this manner are already surprisingly 
good, fortunately good enough for all our future applications of this method. 

Let us illustrate the adjustments with the following example. Figure l ( a )  shows 
Po-P,, for a shell source at optical depth 5 below the boundary of a ball with radius 
R = 10. We have set xN = J 3  for all these profiles. The very first scattering orders 
have their maxima near t = 10. With increasing N, the peaks move to the right with 
max P,, near t = 15. The Monte Carlo simulations graphed in figure l ( b )  show, 
however, that the very first scattering orders should have their maxima near t = 5 .  The 
analytical profiles in figure 1( c )  have been adjusted according to the two rules described 
above. The timing of the peaks in figure l ( c )  is in excellent agreement with Monte 
Carlo. The magnitudes of P,-P, appear, however, to be too small if compared 
to their counterparts in figure l (b) .  With increasing optical depth the discrepancy 
between the magnitudes of the first few scattering orders becomes even greater, but 
decreases for smaller optical depths. Since the lowest PN are numerically not very 
significant in the clearly optically thick case, this disagreement does not pose a serious 
problem. It should, in this context, be noticed that figures 3(a)  and 3(b),  showing the 
sum for the adjusted analytical and corresponding Monte Carlo case of our example, 
are in perfect agreement. This includes the onset of the diffusion profiles. Notice also 
the excellent agreement between figures 2 ( a )  and 2(b). There is a visible but not 
dramatic discrepancy between the magnitudes of the P5 profiles. 

5. The semi-infinite medium 

The case of a semi-infinite geometry is included in (3) as a limit. Let T (or T,) denote 
the optical depth of the observer (or source) below the boundary at R, i.e. r = R - T 

and r, = R - T ~ .  We substitute these expressions for r and ro into (3) and go to the 
limit of R approaching infinity. I t  follows that 

(13) 
For large R, no photons diffusing through the plasma ball will reach the boundary on 
the other side after a finite amount of time. This explains why the original double 
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sum over the indices v and n has been reduced to a single summation over v with 
n = 1. The drastic reduction in the number of integrals makes (13) particularly attractive 
for applications. Fortunately, the convergence to the semi-infinite case is rapid. A 
shell geometry with given ro and R produces essentially the same profiles as a 
semi-infinite geometry with T~ = R - ro if the ratio R / T ~  is of order ten. In the example 
illustrated in figures 1, 2 and 3 ,  the ratio R / (  R - ro) is exactly equal to two. We have 
studied the corresponding semi-infinite geometry with T~ = 5 and found only minor 
modifications of the profiles. 

One expects the analytical theory to produce good results for optically thick cases. 
Surprisingly, the agreement with Monte Carlo extends down to even modest optical 
depths. Figure 6 ( a )  shows Po-Pll for a source at optical depth T~ = 1, with a = 0.05 
and a = 0. These profiles are in excellent agreement with their Monte Carlo counterparts 
in figure 6 ( b ) .  The inversion max Po<max Pl > max P2 is typical for the transition 
regime between optically thin and thick. The sum in Figure 7( a )  includes Po-P45. It 
is a perfect match for the Monte Carlo counterpart in figure 7 ( b ) .  

Discrepancies become visible in the optically thin regime. Figure 8 ( a )  shows PO-PlI 
for ~ ~ = 0 . 1 ,  with a =0.05 and a = O .  When compared to the corresponding Monte 

-1 0 0 10 20 30 
Time 

Time 

Figure 6. Semi-infinite geometry with T~ = 1, a = 0.05, a = 0 and T = 0. The orders Po-P,, 
are shown. Notice the inversion in the sequence Po, P , ,  P2. The profiles in (a)  are from 
the analytical theory. The corresponding Monte Carlo profiles are shown in ( b ) .  
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Figure 7. The analytical sum over Po-P4, is shown in ( a )  for the same geometry as in 
figure 6 .  The corresponding Monte Carlo sum is shown in ( b ) .  

Carlo simulations in figure 8 ( b ) ,  these profiles appear to be slightly delayed, and the 
magnitudes are not in agreement. The discrepancy between the analytical sum and 
the Monte Carlo counterpart for this case is, on the other hand, not large. The analytical 
sum is delayed by one time unit but the shapes of the curves match perfectly. 

In the case of extended sources ro> 1, the analytical results are applicable to the 
modest Knudsen regime, i.e. to sources with 1 d a. In figure 9 ( a )  the front profiles 
PO-Pl1 are shown for a semi-infinite geometry with T ~ =  5 and a = 5 .  The comparison 
with our numerical simulations in figure 9( b )  shows good agreement for the timing of 
the peaks, but the same discrepancy with the magnitudes of the very first PN is visible. 
The analytical and Monte Carlo sums for this case match perfectly. 

6. Point-like sources 

In this section, we study the profiles of shell sources (2) with small radii roc< 1. For 
ro approaching zero such sources can be represented as 

S( t, x) = S3(X)d( 2 ) .  
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Figure 8. Semi-infinite geometry with T~ = 0.1, a = 0.05, a = 0 and T = 0. From top to 
bottom, the orders Po-P,, are shown. The analytical profiles in ( a )  are delayed by about 
one time unit when compared to their Monte Carlo counterparts in ( 6 ) .  

The passage to the limit of a point source has been discussed earlier; see expression 
( 5 )  in I. It is straightforward to obtain the following time-convoluted version of that 
result: 

P N - l ( f ,  R, r; x ;  a) 

4 t -Xr )  
( Xr/2) -’ 

-- - x2 exp[-( l+a)xr]  
4 Irr ( N - l ) !  

EV( v - 1) ( t  - f ’ ) N - u  
dt ,  

( N  - v)! {[( v - 1)/2]!}2 
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Figure 9. Illustration of the Knudsen regime for a semi-infinite geometry with T,, = 5, a = 0, 
T = O ,  but a = 5 .  The orders Po-P,, are shown, in ( a )  from the analytical theory and in 
( b )  from our numerical simulation. 

( v  - n - 1 )  exp[(l +a) t ’ ]4  t ’ )  

dt ,  ( t  - ( ( t  - ? I ) ’ -  (2nxR --xr)’ 
4 r r  4 

( t  - - (2nxR +Xr)’ 
8 r r  4 

r - Z n X R - X r  

d f ’ ( 2 n x R  +Xr)  
- 
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- t - 2 n x  R - x r  d t , ( t - t ’ ) ” - ” ( ( t - t ’ ) 2 - ( 2 ~ ~ R + ~ r ) 2  I, 4 m 4 

This expression produces good results when applied to non-transient sources (i.e. 
a ~ 0 . 0 5 )  in optically thick geometries. As we can tell from (12) in I ,  the photons 
scattering in the forward direction only are separately accounted for by a 6 (  t -,yr)-type 
precursor part. For the case of clearly transient sources with (Y > 1, this singular part 
may dominate the other terms and give rise to exotic features in the onset portion of 
a diffusion profile. Figure lO(a) shows Po-P,, for a point source at the centre of a ball 
with radius R = 5. The source is transient with a = 5. The singular character of the 
precursor part becomes visible in the sharply peaked shapes of Po-P8. The sum for 
this case is shown in figure 10( b ) .  The spikes give rise to a precursor at t = 5 clearly 
separated from the main peak near t = 10. The numerical simulations show, on the 
other hand, no such exotic features for (Y = 5; see figure lO(c). However, if we consider 
an extremely transient source with, say, a = 100, the Monte Carlo method produces a 
precursor strikingly similar to the analytical version with a = 5; see figure 10(d). 

The qualitative picture obtained from the analytical approach is, therefore, correct. 
The collapse of the quantitative accuracy is explained by the singular character of the 
random distributions the result (15) is based on. For an extended source, the spatial 
convolution integrals smear out the singular 6 (  t - X r )  terms. This explains, for instance, 
why the results for the semi-infinite geometry are equally good for a = 5 and a = 0.05; 
see figure 9. The complications with the diffusion front associated with sources of 
type (14) persist if we give the source a small but finite extension 0 < ro < 1 and proceed 
with (3). Applicability of the analytical theory to the Knudsen regime requires ro> 1. 
Expression (15) also produces inaccurate results when applied to cases of modest 
optical depth, say R < 4. 

Figure 1 l ( a )  shows the sum P0-P6, for an observer at r = 5 inside a ball with R = 7 .  
the agreement with the Monte Carlo simulations is excellent; see figure l l ( b ) .  The 
peak in figure 11 is near t = 15 and the tail extends out to t = 65. This contrasts with 
the case R = r = 5 where the peak is near t = 10 and the tail only extends out to t = 50; 
see, for instance, the main peak and tail in figure 10(b). The delay of the peak and 
the extension of the tail in figure 11 are explained by the inside position of the observer 
which receives a delayed signal from the photons scattering inward from the domain 
between r = 5 and R = 7 .  If we increase the size of the ball to, say, R = 50, the profiles 
obtained at r = 5  agree with those obtained at r = 5  in an injnite medium. The peak 
is still near t = 15 but the diffusion tail extends out to t = 200. 

The transition to a point source is a smooth one. For instance, the diffusion profiles 
of a shell source ro = 1 inside a ball R = 10 coincide with the diffusion profiles from a 
point source (14) at the centre of the same ball. In cases of very large R one may, 
therefore, model point sources with (3) and a source of finite extension. 

7. Effects of absorption 

The photospheric plasma geometries we are interested in are characterised by long 
photon lifetimes with respect to absorption. The effects of absorption become important 
if the optical depth of the source below the boundary is large (see in this context the 
review in the introduction to I). The absorption coefficients generally depend on the 
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Figure 10. Knudsen regime for a point source at optical depth R = 5 .  In ( a )  Po through 
P,, are shown for the analytical theory with (I = 5 and r = R. The sum for this case is 
shown in (b)  and includes Po through The Monte Carlo counterpart in (c )  shows, 
however, no precursor for (I = 5 .  A similar profile can be produced from a numerical 
simulation if the transient parameter is increased to the high value (I = 100; see ( d ) .  

photon frequency and plasma temperature thus implying the same dependences for 
the dimensionless coefficient a = K, /  K T .  Every photon-electron scattering changes the 
photon frequency and the coefficient a must, in principle, be adjusted after every 
scattering. A full-scale discussion, covering Comptonisation plus absorption, will be 
presented in the next paper of this series. We are, at this point, only concerned with 
the simple case of a constant absorption coefficient a < 1. 

The algorithm described in 0 3 needs some minor modifications. The mean free 
path AT in step ( b )  must be replaced by 

i = ( K T  + K , ) - ' .  

As for step (c), it is clear that the remaining 

No[ 1 - exp( - R / i ) ]  

photons have two options. Either they are absorbed or they scatter at some point in 
the interval [0, RI. The point of scattering, r, is generated from the original probability 
density function 

A;'[1 -eXp(-R/A,)]-' exp(-r/A,) O a r s R .  (17) 

A fraction of the photons in (16) is lost in the interval [0, r] due to absorption. Only 

NI=exp( - r~ , )No[ l  -exp(-R/i)]  

photons reach the position r and are scattered as in step ( d ) .  
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Figure 11. Profiles of a point source at the centre of a ball R = 7. The observer is inside 
at r = 5 and a =0.05. The sum over Po-P63 is shown, in ( a )  from the analytical theory 
and in ( b )  from our numerical simulation. 

The conventional Monte Carlo method handles absorption during the ith scattering 
by selecting a scattering point r s ( i )  from AT' exp(-r/Ar), the density (16), and an 
absorption point ra( i )  from the density K ,  exp( - K , r ) .  For ra( i )  < r,( i )  < Ri or r,( i )  < 
Ri < rs ( i ) ,  the photon is absorbed and the trajectory terminated; Ri is defined as in 
0 3. For rs( i )  < ra( i )  < Ri  or rs( i )  < Ri < ra( i), the photon scatters ar r,( i )  as in step ( d )  
in 0 3 .  For rs( i), ra( i )  > R i ,  the photon escapes and is added to the output profile. 

We have compared the two Monte Carlo methods and found them to be in perfect 
agreement. 

Figure 12 shows the total diffusion profiles of a source at optical depth T ~ =  10 
below the boundary of a semi-infinite geometry. The upper curve shows the case 
without absorption. The diffusion tail extends far beyond t = 300. The impact of a 
modest absorption coefficient a = K , / K r  = 0.01 is clearly visible in the form of a rapidly 
decaying profile extending out to about t=300 only. In absolute numbers, the 
maximum of the lower curve is reduced to exp(-50a) = 0.6 times the magnitude of 
the absorption free profile. We have scaled the maxima of the two profiles to the same 
magnitude. The agreement with Monte Carlo is excellent. 
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Time 

Figure 12. Illustration of the impact of a modest absorption coefficient a=0.01.  The 
geometry is semi-infinite with .ro=lO, a =0.05 and . r = O .  The upper curve shows the 
analytical sum Po-P,, for a = 0. The lower curve shows the same sum for a = 0.01. 
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